
LPC17xx

Serial Interfaces

(UART: Universal Asynchronous Rx/Tx)

Serial Interfaces: UARTs 0…3

o 4 modules (UART0, 1, 2, 3).

o 16 byte Receive and Transmit FIFOs with DMA support.

o Fractional divider for baud rate control, auto-baud capabilities,
and implementation of software or hardware flow control.

o EIA-485/RS-485 and 9-bit mode support (UART1).

n Allows both software address detection and automatic address
detection using 9-bit mode.

n Auto Direction Control.
o Control line RTS/DTS to enable and disable the driver.

o Address Match Register: store the station address in a RS-485 milti-drop

communication.

o Delay Value register: set the delay between the last stop-bit and the

deassertion of the DIR line.

o Modem control support (UART1).

o IrDA support for infrared communication (UART3).

o Maximum possible speed of the UART ~ 6 Mbps.

UART: Universal Asynchronous Rx/Tx

UART: Universal Asynchronous Rx/Tx

UART0,2,3

o Start Bit.

o Data Bits of 5, 6, 7 or 8.

o Parity Bit.

o Stop Bit of 1, 1.5 or 2.

n Example: 8 bits data, No Parity, 1 stop bit

UART: TX Character Framing

3.3V
 0V

b0 b1
b2 b3 b4 b5 b6

Serial port b7
Start Stop

One frame

o RS-232 is a popular communications interface for connecting modems
and data acquisition devices (i.e. GPS receivers, electronic balances,
data loggers, ...) to computers.

o RS-232 can be plugged straight into the computer’s serial port (know
as COM or Comm port).

o RS-232 Line Driver
n Each signal (TxD, RxD) on the interface connector with reference to a signal ground.

n The “idle” state (MARK) has the signal level negative with respect to common whereas
the active state (SPACE) has the signal level positive respect to the same reference.

UART: RS-232

15

Vss
5

4

3

1

2

9

8

7

6

DB9 female

TxD89

710

6
0.1µF

2

0.1µF

0.1µF 5

4

0.1µF 3

1

0.1µ

RxD

F
16

+3.3V

MAX
3232

+5.5V
-5.5V

LPC176x

RxD0

TxD0

P0.3

P0.2

o Parallel-to-serial conversion

o Non-FIFO Mode
n Transmit Holding Register (THR) and Transmit Shift Register (TSR)

o FIFO Mode

n Transmit (TX) FIFO and Transmit Shift Register (TSR)

o 16x timing for bit shifting.

o Character Framing.

o Parity Insertion.

o TX FIFO interrupt and status.

UART: Transmitter

o Non FIFO mode:
n Write Data to Transmit Holding Register (THR).

n Data in THR is transferred to Transmit Shift Register (TSR) when TSR is
empty.

n TSR shifts the data out on the TX output pin.

o FIFO mode:
n Write Data to Transmit Holding

Register (THR).

n Transmit data is queued in TX FIFO.

n Data in TX FIFO is transferred to

Transmit Shift Register (TSR) when TSR is empty.

n TSR shifts data out on TX output pin.

UART: Transmitter

o Non FIFO mode:
n Incoming data is received in the Receive Shift Register (RSR).

n Received data is transferred to the RHR.

n Error tags associated with data in RHR can be read via LSR.

n Read RHR to read the

data out.

o FIFO mode:
n Incoming data is received in the

Receive Shift Register (RSR).

n Received data is queued in the RX FIFO.

n Error tags associated with data in

RHR can be read via LSR.

n Read RHR to read the data out.

UART: Receiver

o Start bit detection and validation:
n HIGH to LOW transition indicates a start bit.

n Start bit validated if RX input is still LOW during mid bit sampling.

o Data, parity and stop bits are sampled at mid bit.

o A valid stop bit is HIGH when the stop bit is sampled.

UART: RX Character Validation

o Line Status errors
n Error tags are associated with each byte:

o Framing error if stop bit is not detected.

o Parity error if parity bit is incorrect.

o Break detected if RX input is LOW for duration of one character time and stop bit
is not detected.

o Overrun error if character is received in RSR when RX FIFO is
full.
n Non-FIFO mode:

o RHR has a data byte and data received in RSR.

o RSR data overwrites RHR data.

n FIFO mode:

o RX FIFO is full and data is received in RSR.

o Data in RX FIFO is not overwritten by data in RSR.

UART: RX Error Reporting

o Configurable baudrate:

n UnDLM, UnDLL are 8 bits data.

n 1 ≤ MULVAL ≤15

n 0 ≤ DIVADDVAL ≤14

n DIVADDVAL ≤ MULVAL

n Example -> UART0 (19200 baudios)
LPC_UART0->LCR |= DLAB_ENABLE; // importante poner a 1

LPC_UART0->DLM =0;

LPC_UART0->DLL =81;

LPC_UART0->LCR &= ~DLAB_ENABLE;// importante poner a 0

UART: Baudrate

Reset

 6

16

[] 100 / 4
0 81.38

16 [] 16 19200t

PCLK Hz
U DL

V baudios
= = =

⋅ ⋅

UART: Register Map (I)

UART: Register Map (II)

UART: Rx Buffer Register ,Tx Holding Register

UART: Divisor Latch LSB, MSB Registers

n Example set baudrate (FR=1):

DL=F_pclk/16*baud; // Round to the nearest whole!!!!

LPC_UART0->DLL= DL%256; //LSB

LPC_UART0->DLM= DL/256; //MSB

 6

16

[] 100 /4
0 81.38

16 [] 16 19200t

PCLK Hz
U DL

V baudios
= = =

⋅ ⋅

UART: Interrupt Enable Register

UART: Interrupt Identification Register

UART: Interrupt Handling

UART: FIFO Control Register

UART: Line Control Register

UART: Line Status Register

UART: Line Status Register (continued)

UART: Software example (I)

void uart0_init(int baudrate) {

 LPC_PINCON->PINSEL0 = (1 << 4) | (1 << 6); // Change P0.2 and P0.3 mode to TXD0 and RXD0

 // Set 8N1 mode (8 bits/dato, sin paridad, y 1 bit de stop)
 LPC_UART0->LCR |= CHAR_8_BIT | STOP_1_BIT | PARITY_NONE;

 uart0_set_baudrate(baudrate); // Set the baud rate

 LPC_UART0->IER = THRE_IRQ_ENABLE | RBR_IRQ_ENABLE; // Enable UART TX and RX interrupt (for LPC17xx UART)
 NVIC_EnableIRQ(UART0_IRQn); // Enable the UART interrupt (for Cortex-CM3 NVIC)

}

static int uart0_set_baudrate(unsigned int baudrate) {
 int errorStatus = -1; //< Failure

 // UART clock (FCCO / PCLK_UART0)
 // unsigned int uClk = SystemFrequency / 4;
 unsigned int uClk =SystemCoreClock/4;
 unsigned int calcBaudrate = 0;
 unsigned int temp = 0;

 unsigned int mulFracDiv, dividerAddFracDiv;
 unsigned int divider = 0;
 unsigned int mulFracDivOptimal = 1;
 unsigned int dividerAddOptimal = 0;
 unsigned int dividerOptimal = 0;

 unsigned int relativeError = 0;
 unsigned int relativeOptimalError = 100000;

 uClk = uClk >> 4; /* div by 16 */

 /*
 * The formula is :
 * BaudRate= uClk * (mulFracDiv/(mulFracDiv+dividerAddFracDiv) / (16 * DLL)
 *
 * The value of mulFracDiv and dividerAddFracDiv should comply to the following expressions:
 * 0 < mulFracDiv <= 15, 0 <= dividerAddFracDiv <= 15
 */
 for (mulFracDiv = 1; mulFracDiv <= 15; mulFracDiv++) {
 for (dividerAddFracDiv = 0; dividerAddFracDiv <= 15; dividerAddFracDiv++) {
 temp = (mulFracDiv * uClk) / (mulFracDiv + dividerAddFracDiv);

 divider = temp / baudrate;
 if ((temp % baudrate) > (baudrate / 2))

LPC_UART0->LCR |= DLAB_ENABLE; // importante poner a 1
LPC_UART0->DLM = DL / 256; // parte alta
LPC_UART0->DLL = DL % 256; // parte baja
LPC_UART0->LCR &= ~DLAB_ENABLE; // importante poner a 0

if (FR=1)
DL=162.73
Baudrate= 9585 bps

UART: Software example (I)

void tx_cadena_UART0(char *cadena)
{
 ptr_tx=cadena;
 tx_completa=0;
 LPC_UART0->THR = *ptr_tx; // IMPORTANTE: Introducir un carácter al comienzo para iniciar TX o
} // activar flag interrupción por registro transmisor vacio

void UART0_IRQHandler(void) {

 switch(LPC_UART0->IIR&0x0E) {

 case 0x04: /* RBR, Receiver Buffer Ready */
 ptr_rx=LPC_UART0->RBR; / lee el dato recibido y lo almacena */
 if(*ptr_rx++ ==13){ /* Caracter return --> Cadena completa */
 ptr_rx=0; / Añadimos el caracter null para tratar los datos recibidos como una cadena*/
 rx_completa = 1; /* rx completa */
 ptr_rx=buffer; /* puntero al inicio del buffer para nueva recepción */
 }
 break;

 case 0x02: /* THRE, Transmit Holding Register empty */
 if(*ptr_tx!=0)
 LPC_UART0->THR = *ptr_tx++; /* carga un nuevo dato para ser transmitido */
 else
 tx_completa=1;
 break;
 }
}

UART1: Modem

UART1: RS-485

o What is RS-485?
n RS-485 is a EIA standard interface which is very common in the data

acquisition world.

n RS-485 provides balanced transmission line which also can be shared in
Multi-drop mode.

n It allows high data rates communications over long distances in real world
environments.

o How fast can RS-485 be?
n RS-485 was designed for greater distance and higher baudrates than RS-

232.

n According to the standard, 100kbit/s is the maximum speed and distance
up to 4000 feet (1200 meters) can be achieved.

UART1: RS-485 Line Driver

o Balanced Line Drivers
n Voltage produced by the driver appears across a pair of signal wires that

transmit only one signal. Both wires are driven opposite.

n RS-485 driver has always the “Enable” direction control signal.

n Differential system provides noise immunity, because much of the
common mode signal can be rejected by the receiver. So ground shifts and
induced noise signals can be nullified.

MASTER SLAVE-1

SLAVE-2 SLAVE-3

UART1: RS-485 Network

o RS-485 provides Half-
Duplex, Multi-drop
communications over
a single twisted pair
cable.

n The standard specifies
up to 32 drivers and
32 receivers can share
a multidrop network.

n Terminator resistors
avoid reflected signal

UART1: RS-485 Half and Full Duplex

Half-Duplex

Full-Duplex

UART1: RS-485 vs RS-232

UART1: RS-485 modes of operation

o Normal Multi-drop Mode (NMM)

o Auto Address Detection (AAD)

o Auto Direction Control

o Output inversion

UART: Devices with RS-232 interface

o GPS Module (VK16E GMOUSE GPS Module SIRF III)

o Built with fast positioning and the
ability to track 20 satellites SIRF III
generation chip.

o Built-in backup battery.

o Built-in high gain LNA.

o With selectable baud rate:
4800,9600,19200,38400

o NMEA format (ASCII):

o RMC, GSV, GSA, GGA, VTG, GLL.

Data example: in Polytechnic School !!!

o The default output for the 9600 baud
standard.

UART: Devices with RS-232 interface

o 2.4G Wireless WIFI Module (TLG10UA03)

• Full support for serial transparent data transfer mode, really Positive Serial Plug and Play.

• The new AT command set, all based on ASCII.

• Complete TCP / IP protocol stack to support DHCP protocol and DNS dynamic IP address assignment

domain name resolution function.

• Built-in WEB server, implemented using IE browser.

• Remote configuration via the wireless network module parameters.

• Supports Frequency range: 2.412 ~ 2.484 GHz.

• Supports two types of wireless networks:

Infrastructure Network (Infra) and ad hoc networks (Adhoc).

• Support multiple security authentication mechanisms:

WEP64/WEP128 / TKIP / CCMP (AES)

WEP/WPA-PSK/WPA2-PSK.

• Support for fast networking.

• Supports wireless roaming.

• Support for multiple network protocols: TCP / UDP / ICMP / DHCP / DNS / HTTP

• Supports automatic two operating mode and command support transparent transmission mode.

• Support AT command set controls.

• Support for a variety of parameter configuration mode: Serial / WEB server / Wireless connection.

UART: Devices with RS-232 interface

o Digital Compass (HMR3200/HMR3300)

• The HMR3200 is a two-axis precision compass with
three orthogonal magnetoresistive sensors, and can
be used in either vertical or horizontal orientations.

• The HMR3300 includes a MEMS accelerometer for a
horizontal three-axis, tilt compensated precision
compass for performance up to a ±60° tilt range.

o Optical Fingerprint Sensor (EM404)

• EM404 integrated fingerprint verification module is
the latest release of HF&CCTV. It consists of optical
fingerprint sensor, high performance DSP processor
and Flash.

• It boasts of functions such as fingerprint enrollment,
fingerprint deletion, fingerprint verification,
fingerprint upload, fingerprint download, etc.

UART: Devices with RS-232 interface

o Camera module (CMOS 1/4 inches Image Sensor JPG)

• Command instruction:

•1 Reset command: 56002600

•2 Photographing command: 5600360100

•3 Read the data length of the captured image: 5600340100
Return: 76 00 34 00 04 00 00 XX YY
XX YY ------- picture data length, XX is the high byte, YY is the low byte.

•4 Read the picture data: 56 00 32 0C 00 0A 00 00 XX XX 00 00 YY YY ZZ ZZ
Return: 7600320000 (interval) FF D8. FF D9 (interval) 7600320000
00 00 XX XX ------ starting address (starting address must be a multiple of 8, generally 00 00)
00 00 YY YY ------ picture data length (high byte first, then low byte) ZZ ZZ -------- interval (= XX XX * 0.01

milliseconds, preferably a small number, such as 00 0A)
Note: JPEG picture file data must begin with FF D8, and end with FF D9.

•5 Stop shooting: 5600360103

•6 Set camera image compression command: 56 00 31 05 01 01 12 04 XX
XX generally is 36 (range: 00 ---- FF)

•7 Set the camera image size: (default size: 320 * 240)
320 * 240: 56 00 31 05 04 01 00 19 11
640 * 480: 56 00 31 05 04 01 00 19 00

•8 Get into sleep mode: 56 00 3E 03 00 01 01

•9 Modify baud rate: 56 00 24 03 01 XX XX

UART: Devices with RS-232 interface

MLX90614 Infrared
Thermometer Module

Fingerprint Module Capacitive
Sensor Em401

Bluetooth to Serial Slave

TC35 SMS Module Board pH sensor Module (AtlasScientific) NFC Reader Module (pn532)

